MIDTERM: B3 REPRESENTATION THEORY

Date: 23^{rd} Sept 2022

All representations considered here are of finite groups and over complex numbers. Total points is **110** and the maximum you can score is **100** points.

- (1) (10+10=20 points) Let $\rho: G \to GL(V)$ be a representation. Show that the endomorphism $f = \sum_{g \in G} |g|\rho(g)$ of V is G-equivariant. Here |g| denotes the order of g in G. If V is irreducible then compute f.
- (2) (15+5=20 points) Let G be a finite group and V be the regular representation of G. Show that Hom(V, V) is isomorphic to $V \otimes V$. Show that this doesnot hold for every G-representation V.
- (3) (10+10=20 points) Let D_4 be the dihedral group of order 8. How may irreducible representations D_4 has? Write down their dimension. Compute the number of four dimensional representations $D_4 \times (\mathbb{Z}/10\mathbb{Z})$.
- (4) (5+15=20 points) Let G be a finite group acting on a set X. Define the associated permutation representation of G. Let V be the permutation representation of S_3 associated with the action of S_3 on $\{1, 2, 3\}$. Decompose Sym^2V and Ext^2V as direct sum of irreducible representations.
- (5) (5+10+15=30 points) Define induced representation. Let G be a group and H be a subgroup of G. Let W be the trivial representation of Hand $V = \operatorname{Ind}_{H}^{G} W$. Let $K = \bigcap_{g \in G} g^{-1} Hg$. Show that every element of Kacts trivially on V. If G/K is abelian show that V is a direct sum of one dimensional subrepresentation.